

GEORG-AUGUST-UNIVERSITÄT Göttingen

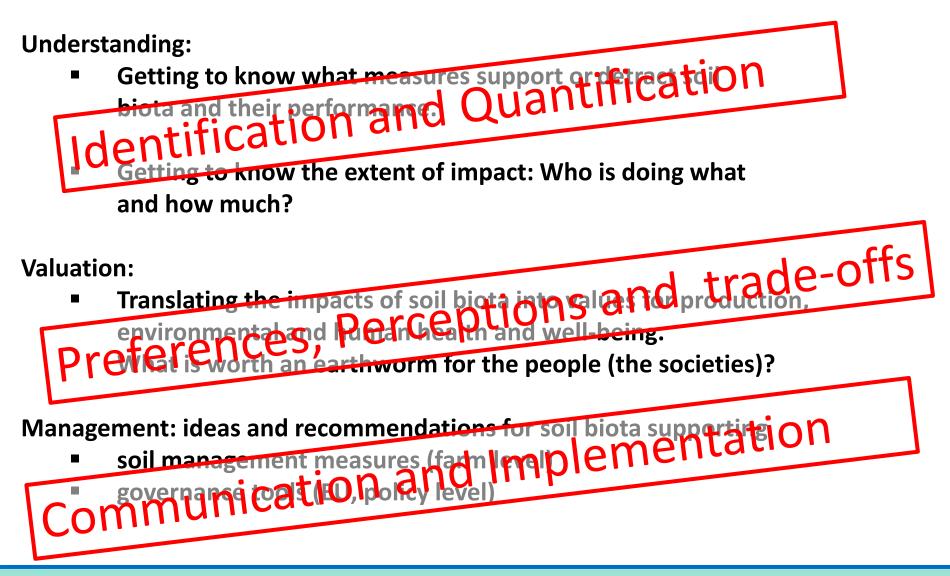
Ecosystem services of soil biota in agriculture

Ecosystem services driven by soil biota – understanding, valuation, and management – the SoilMan-Project

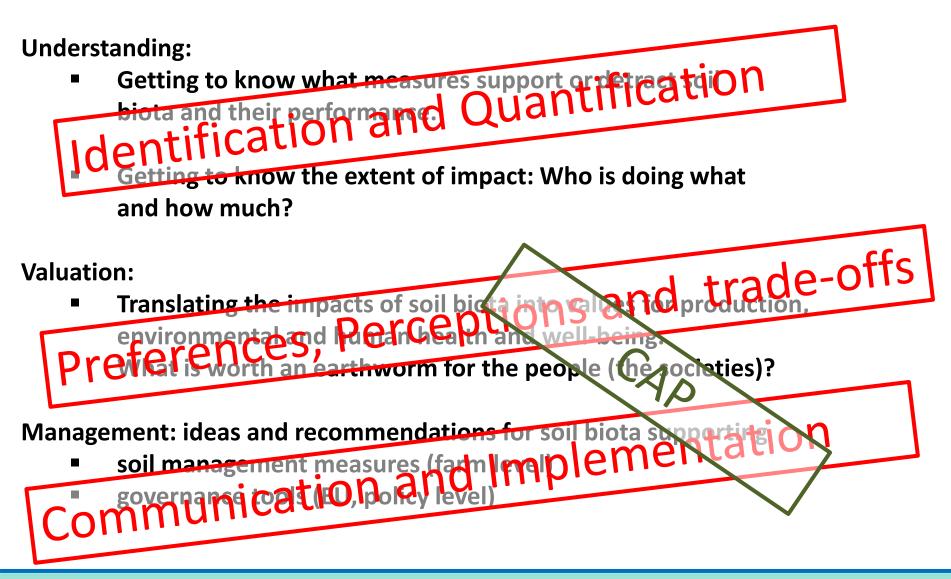
Foto: Joergensen

Martin Potthoff, Holger Bergmann, Deborah Linsler, Guenola Peres, Stefan Schrader, Blanca Landa, Astrid Taylor, Elke Plaas, Tania Runge, Martin Banse Annegret Nicolai, Daniel Cluzeau and the whole SoilMan-Team

SoilMan is research on the provisioning of ecosystem services by soil biota:


Understanding:

- Getting to know what measures support or detract soil biota and their performance.
- Getting to know the extent of impact: Who is doing what and how much?
- Valuation:
 - Translating the impacts of soil biota into values for production, environmental and human health and well-being.
 What is worth an earthworm for the people (the societies)?
- Management: ideas and recommendations for soil biota supporting
 - soil management measures (farm level)
 - governance tools (EU, policy level)


SoilMan is research on the provisioning of ecosystem services by soil biota:

SoilMan is research on the provisioning of ecosystem services by soil biota:

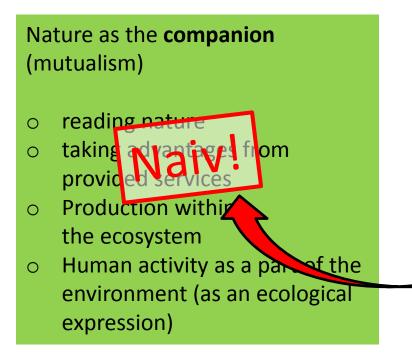
Why SoilMan? Why is soil biota so important?

- Soil biodiversity is often overseen!
- Soil biodiversity is hard to communicate due to its complexity
- Soil biodiversity provides essential services for soil fertility
- Sustainability of farming systems depends on soil functions
- and soil functions depend on soil biota
- Soil biota can examplify that nature is a farmers companion

<u>The basic two attitudes (faces)</u> of agriculture vs. nature or environment

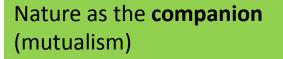
Nature as the **companion** (mutualism)

- reading nature
- taking advantages from provided services
- Production within the ecosystem
- Human activity as a part of the environment (as an ecological expression)


Nature as the **enemy** (competition)

- dominating and controlling nature
- o minimize production risks
- exclude nature to excude uncertaincies
- replacing ecosystem functions with technical and artificial processes and measures

<u>The basic two attitudes (faces)</u> of agriculture vs. nature or environment



Nature as the **enemy** (competition)

- dominating and controlling nature
- o minimize production risks
- exclution nature to excude uncontaincies
 - with technical and artificial processes and measures

<u>The basic two attitudes (faces)</u> of agriculture vs. nature or environment

- reading nature
- taking advantages from provided services
- Production within the ecosystem
- Human activity as a pet of the environment (as an ecological expression)

Nature as the enemy (competition)
deminating and controlling
deminating and

Based on this

Also sustainable agriculture has two understandings

The environment and social friendly understanding:

- Ensure ecological and social functioning
- Respect to nature, people, tribes, gender, creatures, and more
- Sustainability driven by political correctness and **renunciation**

The technical and engineering friendly understanding:

- Ensure technical progress
- Ensure innovations, inventions, and investments
- Sustainability driven by economic growth and welfare development

Important attributes.... of **sustainable agriculture** in the two boxes

The environment and social friendly understanding:

- o Low input systems
- Organic farming
- Carbon sequestration
- o Biodiversity
- o Getting regional
- o No tillage

SoilMan

Ecosystem services of soil biota in agriculture

• Envi-Certifications

The technical and engineering friendly understanding:

- Progress in agronomy
- Progress in plant protection
- Progress in breeding
- Increasing yield, efficiancy and added values in farming systems

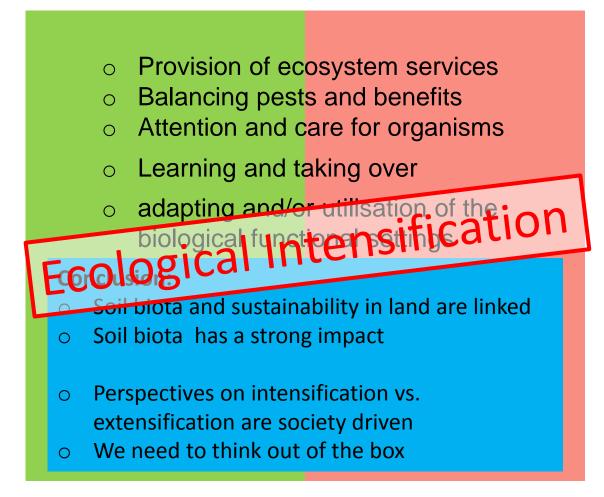
But There are limits however!

An example: Breeding potentialsand agronomic realization		
Linear yield trends (% per year) (Laidig et al. 2014)		
	genetic	agronomic
summer wheat	0.49*	0.05 ->
winter wheat	0.66*	0.20 ->
sugar beet	0.60*	1.04*
oil seed rape	1.42*	0.05 ->
maize (silage)	1.12*	-0.65* 💊
maize (grain)	1.80* 🦯	-0.35 🔪

Summarised by Taube 2018

Future agriculture needs both perspectives

- Provision of ecosystem services
- Balancing pests and benefits
- Attention and care for organisms
- Learning and taking over
- adapting and/or utilisation of the biological functional settings


Conclusion:

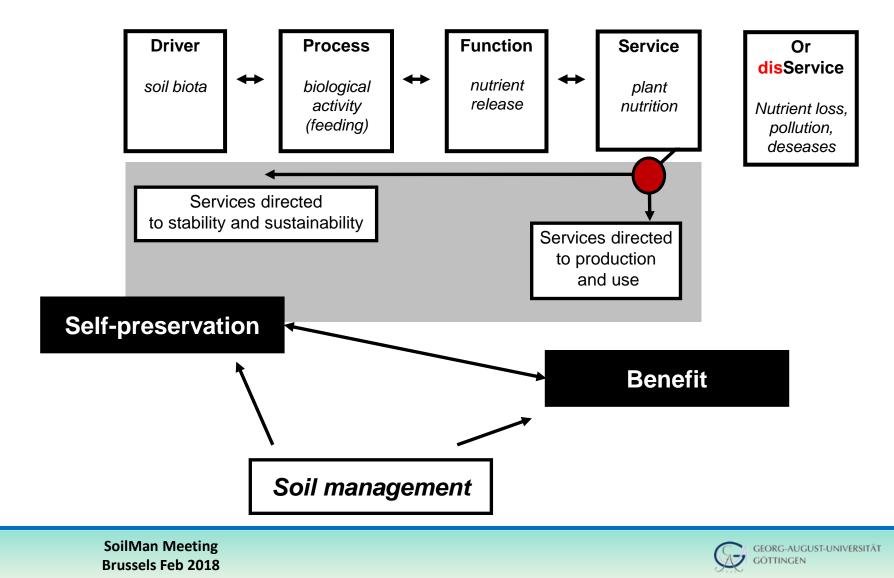
- Soil biota and sustainability in land are linked
- Soil biota has a strong impact
- Perspectives on intensification vs. extensification are society driven
- We need to think out of the box

Future agriculture needs both perspectives

Future agriculture needs both perspectives

- **Balancing pests and benefits** \bigcirc
- Attention and care for organisms
- Learning and taking over Ο
- biological functional setting with soil biota adapting and/or utilisation of the

Ecologicalinte tainability in land are linked


Soil biota has a strong impact

- Perspectives on intensification vs. Ο extensification are society driven
- We need to think out of the box \bigcirc

Services and disservices as a basic conception for the biological impact

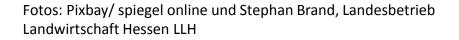
So.....what services are we talking about:

- Decomposition plant nutrition carbon sequestration
- Perforation ... biopores ... infiltration soil airation
- Aggregation ... no erosion ... less compaction ... fertility
- Suppression of pathogens less deseases crop health
- Repression of pathogens and toxins good quality
- Bioturbation biological tillage soil fertility

What is worth an earthworm?

What is worth an earthworm?

with earthworms


Without earthworms

- Soil biota indicates and <u>drives</u> sustainability in land use
- Research has to handle a hugh complexity
- Simplifications are risky
 - The conception of ecosystem services can help to integrate the production and the ecosystem
 - perspectives

Main tasks for SoilMan

- Broadcast soil biota as the driver of services and intrinsic soil health.
- Elevate soil biota from a 'biodiversity goal' to the 'farmer's engineering companion'.
- Integrate soil biota into best practice suggestions and management recommendations.
- Break down *adoption barriers* via stakeholder involvement.

Acknowledgements

The SoilMan project (grant number 01LC1620) was funded through the 2015-2016 BiodivERsA COFUND call for research proposals with the following funders:

